长丝、短纤、复合、异形、超细纤维你分的清吗?
在合成纤维的制作的完整过程中,纺丝流体(熔体或溶液)经纺丝成形和后加工工序后,得到的长度以千米计的纤维称为长丝。长丝包括单丝、复丝和帘线)单丝
原指用单孔喷丝头纺制而成的一根连续单纤维,但在实际应用中往往也包括由3~6孔喷丝头纺成的 3~6 根单纤维组成的少孔丝。较粗的合成纤维单丝 (直径为 0 .08~2mm)称为鬃丝,用于制作绳索、毛刷、日用网袋、渔网或工业滤布;较细的聚酰胺单丝用于制作透明女袜或其他高级针织品。
由数十根单纤维组成的丝条。化学纤维的复丝一般由 8~100 根单纤维组成。绝
由一百多根至几百根单纤维组成的用来制造轮胎帘子布的丝条,俗称帘线、短纤维
化学纤维的产品被切成几厘米至十几厘米的长度,这种长度的纤维称为短纤维。根据切断
长度为 25~38mm,纤维较细(线dtex),类似棉纤维,大多数都用在与棉纤维混纺,如用棉型聚酯短纤维与棉纤维混纺,得到的织物称“涤棉”织物。
长度为 70~150mm,纤维较粗(线dtex),类似羊毛,大多数都用在与羊毛混纺,如用毛型聚酯短纤维与羊毛混纺,得到的织物称“毛涤”织物。
长度为 51~76mm, 纤维的粗细介于棉型和毛型之间 (线dtex),大多数都用在织造中长纤维织物。短纤维除可与天然纤维混纺外,还可与其他化学纤维的短纤维混纺,由此得到的混纺织物拥有非常良好的综合性能。另外,短纤维也可进行纯纺。在目前全世界化学纤维的生产中,短纤维的产量高于长丝的产量。根据纤维特点,有些品种(如锦纶)以生产长丝为主;有些品种(如腈纶)则以生产短纤维为主;而有些品种(如涤纶)则两者比例比较接近。
,从其外形上能看到交替出现的粗节和细节部分,而丝条染色后又能看到交替出现的深浅色变化。粗细节丝是采用纺丝成形后不均匀牵伸技术制造而成,所产生的两部分丝在性质上的差异可以在生产中控制,其分布无规律,呈自然状态。粗细节丝粗节部分的强力低,断裂伸长大,热收缩性强,染色性好,而且易于碱减量加工,可以充分的利用这些特性开发性能独特的纺织品。粗细节丝的物理性能与粗细节的直径比等因素相关。一般的粗细节丝具有较高的断裂伸长率和沸水收缩率及较低的断裂强度和屈服度。其较强的收缩性能可以使粗细节丝与其他丝混合成为异收缩混纤丝。此外,粗细节丝粗节部分易于变形、强力低等问题应在织造、染整过程中加以注意。最初的粗细节丝为圆形丝,随着粗细节丝生产技术的发展,一些特殊的粗细节丝相继出现,如异形粗细节丝、混纤粗细丝、微多孔粗细节丝以及细旦化粗细节丝等,它们或具有特殊的手感和风格,或具有特殊的吸性,多用于开发高档织物。
即变形长丝,可分为高弹丝和低弹丝两种。弹力丝的伸缩性、蓬松性良好,其织物在厚度、重量、不透明性、覆盖性和外观特征等方面接近毛织品、丝织品或棉织品。涤纶弹力丝多数用于衣着,锦纶弹力丝宜于生产袜子,丙纶弹力丝则多数用于家用织物及地毯。其变形方法主要有假捻法、空气喷射法、热气流喷射法、填塞箱法和赋型法等。
即利用高分子化合物的热可塑性,将两种收缩性能不同的合成纤维毛条按比例混合,经热处理后,高收缩性毛条迫使低收缩性毛条卷曲,使混合毛条具有伸缩性和蓬松性,成为类似毛线的变形纱。目前腈纶膨体纱产量最大,用于制作针织外衣、内衣、毛线、差别化纤维
差别化纤维系外来语,来源于日本,一般泛指在原有化学纤维基础上经物理变形或化学改性而得到的纤维材料,它在外观性状或内在品质上与普通化学纤维有明显不同。差别化纤维在改善和提高化学纤维性能与风格的同时, 还赋予化学纤维新的功能及特性,如高吸水性、导电性、高收缩性和染色性等。由于差别化纤维以改善仿真效果、提升舒适性和防护性为主,因此大多数都用在开发仿毛、仿麻、仿蚕丝的服用纺织品,也有一部分用于开发铺饰纺织品和产业用纺织品。
在合成纤维纺丝成形加工中,采用异形喷丝孔纺制的具有非圆形横截面的纤维或中空纤维称为异形截面纤维,简称异形纤维。目前,异形纤维的种类已有数十种,市场上出售的聚酯纤维、聚酰胺纤维及聚丙烯腈纤维,大约 50%为异形纤维。
上图为几种制造异形纤维所用喷丝孔的形状(上)和相应纤维横截面的形状(下)。
(1)光泽性和手感:纤维的光泽与纤维的截面形状有关。三角形截面丝和三叶形截面丝具有闪耀的光泽,改善了圆形纤维的“极光”现象。例如:三角形横截面的聚酯纤维或聚酰胺纤维与其他纤维的混纺织物具有闪光效应,适于开发仿丝绸织物、仿毛织物及多种绒类织物。扁平、带状、哑铃形横截面的合成纤维具有麻、羚羊毛和兔毛等纤维的手感和光泽。五叶形横截面的聚酯长丝有类似真丝的光泽,同时抗起球、手感和覆盖性良好。多角形截面丝除具有闪光性外,覆盖力强,手感柔软,多用于制成变形丝制作针织物和袜子,其短纤维用于混纺,制成多种仿毛织物和毯类产品。矩形截面丝光泽柔和,与蚕丝和兽毛的光泽接近,其短纤维与棉纤维的混纺品具有毛料风格,与毛混纺则可得到光泽别致的织物。
(2)机械性能、吸水性和染色性:异形纤维的刚性较强,回弹性与覆盖性也可得到一定的改善,强度略有降低。另外,异形纤维具有较大的表面积,对水和蒸汽的传递能力增强,而且干燥速度快,染色性好。
(3)抗起球性、蓬松性和透气性:具有扁平截面形状的纤维能够显著改善起毛起球现象,而且扁平度越大,效果越好,如聚酯和聚酰胺扁平截面纤维与毛混纺后,其织物一般不易起球。异形纤维通常都拥有非常良好的蓬松性,织物手感丰满,保暖性强,又因孔隙增加,故透气性好,随截面不规则性的增加,其蓬松性和透气性也有所提高。
并列型复合纤维的主要特性是高卷曲性,可以使织物具有蓬松、柔软、保暖的性能和仿毛风格,主要使用在于膨体毛线、针织物、袜类和毯类制品。皮芯型复合纤维又分为偏皮芯型和同心皮芯型两种,前一种具有立体卷曲性,但卷曲性不如并列型复合纤维。
线dtex以下,可通过海岛纺丝法生产,大多数都用在人造皮革和医学滤材等特殊领域。
20 世纪 80 年代末期,新合纤在日本出现,它以新颖独特的超自然风格和质感,如桃皮面手感和超细粉末手感而风靡全球。新合纤从聚合、纺丝、织造、染整及缝制等各个步骤都采用全新的改性和复合化技术,是一种以往天然纤维和合成纤维不能够比拟的新型纤维材料。按其商品形式,新合纤最重要的包含超蓬松型、超悬垂型和超细型,按其手感可分为蚕丝手感、桃皮手感、超微细粉末手感和新羊毛手感
在所有的服用合纤产品中, 以超蓬松高质感类纤维最多,几乎都采用异收缩混合纤维或多相混合技术制成。为使纤维产品的蓬松性提高,相继开发了高热收缩性聚合物和低收缩潜在自发伸长丝,使织物获得更佳的蓬松效果。
下,主要是采用复合纺极细化技术纺制而成。由此开发的桃皮绒织物具有超柔软和细致的手感,是天然纤维产品很难来做比较的。
超悬垂型纤维是在纺丝液中添加无机微粒子,纺丝成形后进行减量加工以消除无机微粒子,使纤维表明产生无数微细凹蚀。由于降低了单丝间的摩擦性,超悬垂型纤维制品具备超悬垂性和天然纤维不及的独特手感。
合成纤维,尤其是聚酯纤维的可染性差,而且难染深色,通过化学改性使其可染性与染深性得以改善和提高,这种改性的合成纤维就称为易染性合成纤维,最重要的包含阳离子可染聚酯纤维、阳离子深染聚酰胺纤维以及酸性可染的聚丙烯腈纤维与聚丙烯纤维等。易染性合成纤维不仅扩大了纤维的可染范围,降低了染色难度,而且增加了纺织品的花色品种
高性能纤维具有特殊的物理化学结构,某一项或多项性能指标明显高于普通纤维,而且这些性能的获得和应用往往与宇航、飞机、海洋、医学、军事、光纤通讯、生物工程、机器人和大规模集成电路等高新技术领域有关,因此高性能纤维又称为高技术纤维。
高性能纤维通常按其具有的特殊性能加以区分,如高强高模量、高吸附性、高弹性、耐高温阻燃、导光、导电、高效分离、防辐射、反渗透、耐腐蚀、医用和药物纤维等多种纤维材料。高性能纤维大多数都用在产业用纺织品的制造,但其中一些品种也能够适用于开发铺饰用纺织品和服用纺织品,而且对这两类纺织品的性能可以有明显的改善和提高。
通常把直径小于 100nm 的纤维称为纳米纤维(1nm 等于 10 m,即 10 μm,仅是 10 个氢原子排起来的长度),目前也有人将添加了纳米级(即粒径小于 100nm)粉末填充物的纤维称为纳米纤维。
目前,最细的纳米纤维为单碳原子链,这种纳米碳管被誉为纳米材料之王,其原因是这种细到一般仪器都难以观察到的材料有着神奇的本领:超高强、超柔韧、怪磁性。因碳纳米管中碳原子间距短,管径小,使纤维结构不易存在缺陷,其强度为钢的 100 倍,是一般纤维强度的 200 倍,而密度只有钢的 1/ 6。用它制作的绳索可以从地球拉到月球而不被自重拉断。它具有奇异的导电性,既有金属的导电性也有半导体性,甚至 1 根碳纳米管的不一样的部位由于结构变化也可显示不同的导电性。用它作成整流管可替代硅芯片,因而将引起电子学中的重大变化,可将计算机做得极小。用碳纳米管做的纳米器件可组装纳米机器人,即蚊子飞机、蚂蚁坦克等,可用于军事及医疗。碳纳米管可用来制作储氢材料, 把氢开发成为人类服务的清洁能源。此外,碳纳米管还可用作隐形材料、催化剂载体及电极材料等。纳米纤维能支持“纳米机”的排列,把集成排列的“纳米机”连接成大规模系统。
由上表可看出,当纤维直径为 100nm 时,比表面积是直径为 10μm 的 30 多倍,而直径1μm 时的比表面积仅是直径 10μm 的 10 倍。
当粒子的尺寸小到一定值时,费米能级附近的电子能级由准连续变为离散能级,此时,原为导体的物质有可能变为绝缘体,原为绝缘体有可能变为超导体。
纳米纤维的制造大体可分为 3大类:分子技术制备法、纺丝制备法、生物制备法。>